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Abstract
o )

We propose a new approach, called cooperative
neural networks (CoNN), which uses a set of
cooperatively trained neural networks to capture
latent representations that exploit prior given
Independence structure. The model is more
flexible than traditional graphical models based
on exponential family distributions, but
Incorporates more domain specific prior structure
than traditional deep networks or variational
autoencoders. The framework is very general and
can be used to exploit the independence
structure of any graphical model. We illustrate the
technique by showing that we can transfer the
iIndependence structure of the popular Latent
Dirichlet Allocation (LDA) model to a cooperative
neural network, CoNNSsLDA.
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Approximate Graphical model for LDA
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Step 2: Parameterization

Mapping function to obtain Hilbert Space
Embeddings

ux = Bx[$(X)] = / §()p(a)da

Parameterization of operators and
embeddings using Deep Neural Networks
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Algorithm to obtain the Hilbert Space
Embeddings

Algorithm 1 Getting Hilbert Space Embeddings

Input: Parameters {Wy, Wy, W3}

Initialize {uéo),ug?)} =0¢cRP.
for ¢ = 1 to T iterations do
for . =1 to N words do
)ug? = tanh(Ws.word2vec(w;) + Wg.uét))

Normalize ug)

end for

N —1
) = tanh(Wy. SN {ul DY)

Normalize p.”

end for
return { ﬂéT)} : Document embeddings
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. Step 3: Training .

Algorithm to train the for document classification
task using the Hilbert Space Embeddings

Algorithm 2 Training using Hilbert Space Embeddings

Input: Document Corpus D, with each doc ‘d’ has set

of words |wg ;| € Ng.

Initialize P© = {W© u© word2vec'®} with
random values. Let ‘learning rate = r’.

fort =1to 7 do

Sample docs from D as { Dy, y, }
Using Alg(1) get Hilbert embeddings {x; } for *Dy’

Ypred — H (Mng P(t_l))
Update: P(t) = P(t_l) - \/p@-1) L(ypfreda ys)

end for
return {P7}
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Visualization of the CoNN-sLDA architecture for a single document

Experiments

Table:

‘MultiSent’

AUC on

o
324K

documents. SEM over 5 Fold CV. Dim
Indicates Hilbert space dimension.

Classifier AUC(%) Details
VI-sLDA 76.8 £0.40 K=50 (topics)
DiscLDA 82.1 £0.40 K=50
BP-sLDA 88.9 £ 0.36 K=50, L=5
DUI-sLDA 86.0 £ 0.31 K=50, L=1
DUI-sLDA 91.4 £0.27 K=50, L=5
CoNN-sLDA 03.3+£0.13 Dim=10
CoNN-sLDA(imb) 93.4+£0.13 Dim=20
Table: 20 Newsgroups’  classification

accuracy on 19K documents. SEM over 5 fold
CV. Dim indicates Hilbert space dimension.

Classifier AUC(%) Details
VI-sLDA 73.8 £ 0.49 K=50 (topics)
DiscLDA 80.2 £ 0.45 K=50
OverRep-S 69.5 £ 0.36 K=512
BP-sLDA 81.8 £ 0.36 K=50, L=5
DUI-sLDA 83.5+0.22 K=50, L=5
CoNN-sLDA 83.4+£0.18 Dim=40
CoNN-sLDA(imb) 83.7 £ 0.13 Dim=80
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Visualizations of Embeddings
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‘20 Newsgroup’ Document Embeddings
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Cooperative neural networks (CoNN) are a new theoretical
approach for implementing learning systems which can
exploit both prior insights about the independence structure
of the problem domain and the universal approximation
capability of deep networks.

We make the theory concrete with an example, CoNN-
SLDA, which has superior performance to both prior work
based on the probabilistic graphical model LDA and generic
deep networks.

While we demonstrated the method on text classification
using the structure of LDA, the approach provides a fully
general methodology for computing factored embeddings
using a set of highly expressive networks.

Cooperative neural networks thus expand the design space
of deep learning machines in new and promising ways.
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